- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Mukherjee, Sundeep (2)
-
Pole, Mayur (2)
-
Sadeghilaridjani, Maryam (2)
-
Shittu, Jibril (2)
-
Arora, Harpreet (1)
-
Chen, Wen (1)
-
Dahotre, Narendra (1)
-
Ghodki, Nandita (1)
-
Liu, Yanfang (1)
-
Mahajan, Chaitanya (1)
-
Muskeri, Saideep (1)
-
Ren, Jie (1)
-
Tahoun, Ismael (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Shittu, Jibril; Sadeghilaridjani, Maryam; Pole, Mayur; Muskeri, Saideep; Ren, Jie; Liu, Yanfang; Tahoun, Ismael; Arora, Harpreet; Chen, Wen; Dahotre, Narendra; et al (, npj Materials Degradation)null (Ed.)Abstract High-entropy alloys (HEAs) with multiple principal elements represent a paradigm shift in structural alloy design and show excellent surface degradation resistance in corrosive environment. Here, the tribo-corrosion response of laser-engineered net-shaped CoCrFeMnNi HEA was evaluated in 3.5 wt% NaCl solution at room temperature. The additively manufactured (AM-ed) CoCrFeMnNi showed five times lower wear rate, regenerative passivation, and nobler corrosion potential during tribo-corrosion test compared to its arc-melted counterpart. A significant anisotropy was seen in the tribo-corrosion response with 45° to the build direction showing better performance compared to tests along the build direction and perpendicular to it. The open circuit potential curves were characterized by a sharp drop to more negative values as wear began, followed by continuous change for the active tribo-corrosion duration and finally a jump to nobler value at the end of the test indicating excellent surface re-passivation for the AM-ed alloy. The superior tribo-corrosion resistance of AM-ed CoCrFeMnNi was attributed to the refined microstructure and highly protective surface passivation layer promoted by the sub-grain cellular structure formed during additive manufacturing. These results highlight the potential of utilizing additive manufacturing of HEAs for use in extreme environments that require a combination of tribo-corrosion resistance, mechanical durability, extended service life, and net shaping with low dimensional tolerance.more » « less
An official website of the United States government
